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Magnetic resonance imaging (MRI) findings of iron overload, particularly in the liver, 
are well established (1). Hepatic iron overload is abnormal accumulation of iron 
in hepatocytes, Kupffer cells, or both (2, 3). Hepatic iron overload is commonly as-

sociated with hereditary hemochromatosis, transfusion-related iron overload, and chronic 
hepatopathies (4). MRI is mainly preferred for detection of hepatic iron. However, different 
forms of iron accumulation and iron sparing can make interpretation of images difficult. 
Knowledge of different forms of hepatic iron overload and iron sparing, and evaluation of 
T2* and R2* maps would allow correct diagnosis of iron-associated liver processes. In this ar-
ticle, we aimed to describe different forms of hepatic iron overload (diffuse, heterogeneous, 
multinodular, focal, hypersiderosis, segmental, intralesional, and periportal) and hepatic 
iron sparing (focal, geographic and nodular, and periportal) (Table). 

   Techniques for evaluation of hepatic iron overload    

Ultrasonography
Ultrasonography is not a suitable technique for evaluation of hepatic iron overload, as it cannot 

detect iron deposition (5). However, nonspecific long-term changes caused by hepatic iron over-
load like cirrhosis, portal hypertension, or hepatocellular carcinoma can be detected by ultrasound. 

Computed tomography
Iron overload is presented as increased liver attenuation (72 HU or more) on unenhanced 

computed tomography (CT) images due to increased absorption of X-rays by iron (6). Asso-
ciated hepatic steatosis, which is characterized as decreased attenuation on CT may poten-
tially reduce sensitivity, whereas other factors increasing attenuation of hepatic parenchyma 
like gold storage in liver (7) and amiodarone administration (8) decrease the specificity of this 
technique. Therefore, CT is not a reliable technique for diagnosis and quantification of iron 
overload in the liver. However, CT may be of use in some patients unsuited for MRI, or to dif-
ferentiate high iron content from calcifications, air, or foreign materials such as surgical clips.

Magnetic resonance imaging
Iron causes a local distortion in the magnetic field and results in T1, T2, and T2* shortening. 

This effect causes signal loss on T2-weighted spin-echo/fast spin-echo and T2*-weighted gra-
dient echo images, and is used for measurement of iron concentration. Iron-induced T2* short-
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ABSTRACT 
Magnetic resonance imaging (MRI) is a well-established imaging modality to evaluate increased iron 
deposition in the liver. Both standard liver imaging series with in-phase and out-of-phase T1-weight-
ed sequences for visual detection, as well as advanced T2- and T2*-weighted measurements may 
be used for mapping the iron concentration. In this article, we describe different forms of liver iron 
accumulation (diffuse, heterogeneous, multinodular, focal, segmental, intralesional, periportal, and 
lobar) and hepatic iron sparing (focal, geographic and nodular). Focal iron sparing is characterized 
by hypointense areas on R2* map and hyperintense areas on T2* map. We also illustrate MRI findings 
of simultaneous hepatic iron and fat accumulation. Coexistence of iron (siderosis) and fat (steatosis) 
can make interpretation of in- and out-of-phase T1-weighted images difficult; calculation of proton 
density fat fraction and R2* maps can characterize abnormal signal changes observed on in- and 
out-of-phase images. Knowledge of different forms of hepatic iron overload and iron sparing and 
evaluation of T2* and R2* maps would allow correct diagnosis of iron-associated liver disorders.
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ening is superior to iron-induced T2 short-
ening, therefore T2*-weighted images have 
greater sensitivity to detect iron (9), and are 
more commonly used for this purpose. It is 
important to be alert to detect iron overload 
in the liver, as it is not always clinically evident. 
In routine abdominal MRI protocols, in- and 
out-of-phase images, which are generally 
used for detection of fat, are also helpful in 
detection of iron. Iron causes signal drop on 
standard in-phase images, contrary to signal 
drop effect of fat on out-of-phase. With this 
principle, many iron quantification methods 
by MRI depends on gradient echo sequences 
with T2* weighting, which were acquired with 
progressively longer echo times. 

There are two major methods in quantifi-
cation of hepatic iron overload, namely, sig-
nal intensity ratio methods and relaxometry 
methods. Signal intensity ratio methods 
measure the signal intensity of the liver and 
another tissue or noise and give proportion 
of these to quantify the liver iron (10, 11), 
whereas relaxometry methods measure 
signal intensity of the liver across multiple 
echo times and calculate T2 or T2* values 
depending on the performed sequence 
(12). T2 or T2* values are inversely related 
with iron concentration. However, R2 or R2* 
values (1000/T2 or T2*) are directly related 
to the iron concentration and increase lin-
early with iron concentration determined 
by liver biopsy (13). Calculation of R2* and 
T2* plays an important role in diagnosing 
the degree of iron overload for planning the 
treatment with iron chelating agents. A T2* 
value below 18 ms is accepted as hepatic 
iron overload (14). A recent study demon-
strated that the R2* cutoff value of 147.1 Hz 
(T2* value of 6.8 ms) discriminates moder-
ate and severe hepatic iron overload from 
absent and mild hepatic iron overload (15). 

Magnetic field strength of the scanner is 
important for measuring R2 and R2* values 
as cardiac and liver R2* values measured on 
3.0 T is higher than values measured on 1.5 
T scanner (16). Higher field strength may 
be an advantage in detection of tissues 

containing low iron and when high image 
resolution is needed. However, higher field 
strength is more sensitive to magnetic sus-
ceptibility artifact, and heavy iron overload 
in the tissue may cause problem in detec-
tion and quantification of iron (17). The soft-
ware for calculating R2 and R2* maps is not 
available on all MRI scanners. Apart from 
these, MRI is a good alternative to biopsy 
for both diagnosis and treatment monitor-
ing of hepatic iron overload. 

   Hepatic iron overload 

Iron homeostasis depends on the balance 
between daily gains (intestinal absorption, 
reuse from old erythrocytes) and losses (ep-
ithelial desquamation, menstruation). This 
balance is crucial, because there is no effec-
tive way for excretion of iron from the body 
(18, 19). There are two distinct etiologic 
causes of iron overload; inherited or primary 
iron overload and secondary iron overload 

Main points

• Hepatic iron overload can be diagnosed by  
in- and out-of-phase sequence and T2* and 
R2* maps.

• MRI is preferred for detection and 
quantification of hepatic iron.

• Knowledge of different forms of hepatic iron 
overload and iron sparing would allow correct 
diagnosis of atypical lesions in hemosiderosis.

• We describe new forms such as hypersiderosis 
and periportal iron sparing.

Figure 1. a–d. Diffuse siderosis in a patient with thalassemia major. There is signal drop on in-phase 
image (a) relative to out-of-phase image (b). R2* measurements on R2* map (c) and colored R2* map (d) 
demonstrate iron overload in the liver, spleen, and pancreas.

c
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d

b

Table. Different forms of hepatic iron overload and iron sparing  

Hepatic iron overload Associated conditions

 Diffuse siderosis Hemosiderosis, hemochromatosis

  Heterogeneous siderosis Iron chelation treatment

 Focal and segmental siderosis Infarction

 Hypersiderosis Hemosiderosis

 Intralesional siderosis Regenerative nodule

  Dysplastic nodule

  Hemorrhagic focal liver lesions (hepatic  
  adenoma, hepatocellular carcinoma,  
  choriocarcinoma, melanoma)

 Periportal siderosis Early hemosiderosis

  Iron chelation treatment

Hepatic iron sparing 

 Focal nodular and geographic iron sparing Hemosiderosis

 Periportal iron sparing  Periportal cavernomatous transformation



syndromes. Primary iron overload (i.e., he-
reditary hemochromatosis) is an autosomal 
recessive disorder in which a defective pro-
tein causes increased intestinal absorption 
of iron from small intestine at 5–10 times 
the normal rate (20). Secondary iron over-
load syndromes include iron-loading ane-
mias (i.e., thalassemia, sideroblastic anemia, 
sickle cell disease, chronic hemolytic ane-
mia, aplastic anemia, pyruvate kinase defi-
ciency), chronic liver diseases (i.e., hepatitis 
C infection, nonalcoholic fatty liver disease, 
alcoholic fatty liver disease), and iatrogenic 
(i.e., red blood cell transfusion, long-term 
hemodialysis) and miscellaneous causes. 

Excess iron primarily accumulates in 
parenchymal cells, particularly in the liv-
er, pancreas, heart, endocrine glands like 
thyroid and pituitary, and synovium in pri-
mary iron overload. However, in secondary 
iron overload, iron accumulates in reticu-
loendothelial system (spleen, Kupffer cells, 
bone marrow, and lymph nodes). Iron also 
accumulates in hepatocytes and other 
parenchymal cells after saturation of re-
ticuloendothelial cells, in secondary iron 
overload. Detection and quantification of 
hepatic iron overload is important for both 
primary and secondary iron overload syn-
dromes. In primary iron overload, liver iron 
content gives information about the risk 
for hepatic complications such as fibrosis 
and cirrhosis (4, 21, 22). In iron-loading 
anemias, liver iron content provides in-
formation about total body iron (23), thus 
quantification of liver iron content helps to 
monitor these patients and the treatment 
(2). Liver biopsy is the current reference 
standard for detection and quantification 
of iron overload. There are two main limita-
tions of liver biopsy. First, the invasiveness, 
for which MRI is a good alternative partic-
ularly when repetitive/follow-up measure-
ments are needed for treatment monitor-
ing. Second, the sampling error, for which 
MRI might even be of benefit to determine 
the best location for biopsy, since hepatic 
iron overload can have various distribu-
tions, as illustrated in this article (4, 24, 25). 
Therefore hepatic iron accumulation de-
tection, quantification, and follow-up eval-
uation after treatment depend on imaging 
methods, especially MRI as described in 
the previous section. 

Hepatic iron overload can be in the form 
of diffuse, heterogeneous, segmental, focal, 
hypersiderosis, intralesional siderosis, and 
periportal siderosis.

Diffuse siderosis
Both primary and secondary iron over-

load can lead to diffuse hepatic iron over-

load. However, diffuse siderosis is mostly 
observed in patients receiving multiple 
blood transfusions. There is a linear cor-
relation between liver iron concentration 
and R2* value (1/T2*) (Fig. 1). 

Heterogeneous siderosis
Hepatic iron accumulation can be hetero-

geneous across the liver (26–29). However, 
this heterogeneity is generally not realized in 
visual assessment of conventional magnetic 
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Figure 2. a–d. In-phase (a), out-of-phase (b), R2* map (c), and colored R2* map (d) images of a patient 
with thalassemia major, who is under iron chelation treatment. Heterogeneous siderosis is obvious, 
especially on R2* map images.

c

a

d

b

Figure 3. a, b. Focal iron accumulation in segment 6 is seen in a patient with segmental portal vein 
thrombosis (not shown in the images). There is a signal drop on in-phase image (a) compared with out-
of-phase image (b).

a b

Figure 4. a, b. Focal wedge-shaped iron accumulation in segment 6 is seen in a patient with breast 
carcinoma most likely due to chemotherapy-related infarction at this location. Note signal drop on in-
phase image (a) compared with out-of-phase image (b).

a b



Different forms of iron accumulation in the liver • 25

resonance images. In some cases, especially 
patients on treatment with iron chelating 
agents, heterogeneous siderosis can be seen 
on R2* maps as a treatment response (Fig. 2).

Focal and segmental siderosis
The main distribution of iron to liver is 

through the portal vein. Situations like 
thrombosis, compression, or shunting of 

portal vein that decrease portal venous 
flow result in unequal iron deposition in 
different segments. Segmental siderosis 
was defined as segmental hypointensity 
on MRI and was confirmed by liver biop-
sy as iron deposition in previous studies 
(30–32). 

Focal iron accumulation can be seen in 
liver due to altered or absent perfusion (Fig. 
3). We observed areas of focal siderosis in 
patients who received chemotherapy. Focal 
iron deposition can be amorphous nodular 
in shape. These areas demonstrate focal 
signal drop on in-phase images compared 
with out-of-phase images (Fig. 4).

Hypersiderosis
Hypersiderosis is seen as an area contain-

ing more iron compared with the rest of the 
liver. Theoretically, hypersiderosis can be 
seen in areas with third inflow due to ab-
errant venous drainage. Hypersiderosis ap-
pear hyperintense on R2* maps and can be 
seen in multiple blood transfusions (Fig. 5).

Intralesional siderosis
Iron can accumulate in regenerative or 

dysplastic nodules, which are referred as 
“siderotic nodules” in cirrhosis, unrelated 
to systemic or hepatic iron overload. The 
detection of siderotic nodule with MRI is 
not challenging, however, discrimination 
of dysplastic nodules from regenerative 
nodules is not feasible (33) (Fig. 6). Devel-
opment of hepatocellular carcinoma (HCC) 
in a siderotic nodule has been defined as 
nodule-in-nodule appearance on T2- or 
T2*-weighted images, consisting of inter-
mediate-high intensity focus in low-sig-
nal intensity siderotic nodule (34, 35). Iron 
presence can also be shown with MRI in 
hemorrhagic focal liver lesions like HCCs, 
hepatic adenomas (36), and some meta-
static lesions like choriocarcinoma (37) and 
melanoma (38). 

Periportal siderosis
Excess iron due to increased intestinal 

absorption initially accumulates in the peri-

Figure 5. a–c. In-phase (a), out-of-phase (b), and R2* map (c) images of a patient with siderosis. A focal hypointense area in segment 4 (within the circle) shows 
more signal drop than rest of the liver on in-phase image compared to out-of-phase image. This area is also seen hyperintense on R2* map (within the circle), 
which is consistent with hypersiderosis in a siderotic liver. 

a b c

Figure 6. a, b. In-phase (a) and out-of-phase (b) images demonstrate multiple siderotic nodules in a 
patient with cirrhosis appearing as hypointense nodules on in-phase images.  

a b

Figure 7. a, b. Periportal signal drop on in-phase image (a) compared with out-of-phase image (b) in the 
periportal area due to periportal iron accumulation in a patient with thalassemia major.  

a b

Figure 8. a, b. Focal geographic iron sparing in a patient with aplastic anemia. There is a geographic 
hypointense area in segment 4 on coronal R2* map (a) and colored R2* map (b) images.  

a b



portal hepatocytes (39). Therefore, peripor-
tal siderosis can be observed in early phases 
of hepatic iron overload or after chelation 
treatment (Fig. 7). 

   Focal hepatic iron sparing  
   in siderotic liver  

Iron sparing refers to areas of liver with 
less iron than surrounding parenchyma, 
similar to fat sparing in the liver.  

Focal nodular and geographic iron sparing
Focal iron sparing can be seen in patients 

with hepatic iron overload due to hemo-
siderosis, usually in segment 4. Location 
of focal iron sparing can match with usual 
areas of focal fat accumulation and focal fat 
sparing. Signal abnormalities in these areas 
most likely result from the third inflow from 
aberrant venous drainage into the liver. 
Most common aberrant venous drainage 
occurs from Sappey veins, right gastric vein, 
and left gastric vein. Focal iron sparing can 
be geographic or nodular in shape (Figs. 8, 
9). Nodular forms may mimic a lesion (40).

Tumor cells of HCCs secondary to he-
patic iron overload-induced cirrhosis don’t 

contain iron (41). In this situation, HCC can 
also be detected as focal nodular iron spar-
ing. 

Periportal iron sparing
Periportal fat accumulation has been de-

scribed before (39), but we could not find a 
case with periportal iron sparing in the liter-
ature. We observed periportal iron sparing 
in a patient with periportal cavernomatous 
transformation and hemosiderosis related 
to myelodysplastic syndrome (Fig. 10). The 
possible mechanism of periportal sparing is 
normal perfusion in the vicinity of peripor-
tal space and caudate lobe. Hypertrophy of 
the caudate lobe supports this mechanism. 
Therefore, after the administration of iron 
chelating agent deferoxamine, iron was 
cleared only from the areas with normal 
perfusion. 

   Iron and fat coexistence  

There can be coexisting hepatic iron 
overload and fat accumulation. In previous 
studies, it was shown that up to 40% of pa-
tients with nonalcoholic fatty liver disease 
have iron overload (42, 43). On the other 

hand, coexistence of steatosis in patients 
with primary iron overload was shown 
to accelerate liver injury (44). In such cir-
cumstances, in- and out-of-phase images 
can cause diagnostic confusion and both 
detection and quantification of iron and 
fat become difficult, especially in conven-
tional MRI. However, quantification of both 
fat and iron is feasible with recent meth-
ods that calculate R2* and proton densi-
ty fat fraction, simultaneously (45). This 
approach can help to clarify coexistence 
of siderosis and steatosis and confusing 
patterns of fat and iron accumulation (40) 
(Fig. 11).

   Conclusion 

There are different forms of iron accumu-
lation and sparing in the liver, which can 
be a result of normal, variant, or abnormal 
perfusion changes. Recent MRI techniques 
for hepatic iron detection and quantifica-
tion can enable better understanding of 
hepatic iron overload and iron sparing, and 
may prevent misdiagnosis of focal signal 
changes related to varying degrees of iron 
content in patients with siderosis.
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Figure 9. a, b. Focal nodular iron sparing in a patient with thalassemia major. There is a nodular hypointense 
area in segment 4 on axial R2* map (a). We observed a lower R2* value (200 Hz) in this area compared with 
the rest of the liver (320 Hz) (b).  

a b

Figure 10. a–c. Periportal iron sparing in a patient with periportal cavernomatous transformation and hemosiderosis related to myelodysplastic syndrome. 
On in-phase image (a) there is a signal drop in liver parenchyma compared with out-of-phase image (b) sparing left periportal area. Postcontrast image (c) 
demonstrates chronic thrombosis of portal vein.

a b c
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